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Numerous investigations [1-7], etc. have been devoted to the phenomenon of thermal explosion, mainly to the 
steady-state theory: the basic problem consists in determining the critical value of the parameter2 Essentially, the 
steady-state theory gives an estimate of the explosion parameters if it is known beforehand that an explosion can take 
place. However, this theory can not take into account the effect of very important factors associated with tl~e develop- 
ment of the process in t ime. Only the nonstationary theory can do this. 

The nonsteady-state problem was first investigated by O. Todes [4] (see also [2] ). In this theory the temperature 
at all points of the reaction vessel was assumed to be the same, and only one form of the temperature dependence (ex- 
ponential) of the reaction rate was considered. 

In the nonsteady-state theory proposed below, just as in [6], the functions ~(T) (characterizing the reaction rate) 
are taken in a very general form (cf. [8] ), and the temperature distribution in the space of the reaction vessel is taken 
into account. Furthermore, we go on to show how the change of concentration of the reactant in the course of the re-  
action may be taken into account, and some qualitative conclusions are drawn relative to the parameters that character-  
ize explosives. These parameters can be accurately evaluated by numerical integration of the corresponding equation 
for a specific relation ~ (T). 

The exact theory of exothermic chemical  reactions must take into account both the change in concentration n(x, t) 
and the change in temperature T (x,t) in space and t ime, where x = { x 1, x 2, x s }. For determining T and n we have 
the system 

07" On 
0--/- = a~2 AT -b cpl (n, T) ,  0--F = a22 An 4- q~2 (n, T)  , (1) 

with the appropriate boundary and initial conditions. Here r (n, T) is a function characterizing the heat release, and 
r (n, T) is the absorption (release) of matter; r (n. T) -< 0 if the concentration falls and ~ (n, T) > 0 if it increases 
(for example, in the case of a chain reaction ). 

System (1) is extremely difficult to investigate. We can simplify the problem by assuming the concentration to be 
constant 9~I (n, T) = X~o (T) ; here X is a constantcharacterizing the heat release [3]. Thus, the problem considered 
may be written: 

OT 
0--7 = a~AT + )W (T) T I t=o -= O, T ]I" -------- 0 , (2) 

where I" is the surface bounding the vessel, which occupies the region G. The function ~o(T) > 0 also increases in the 
interval [0, + oo). Note that if we assume that ~2 (n, T )  = X*q)*(n), then Eq. (1) for n can be investigated in exactly 
the same way. Thus, problem (2), where n is considered in place of T, describes the development in t ime of a chain 
reaction with a single multiplying substance. 

Three possibilities for the development of the reaction with time can be conceived a priori: 

A. The temperature at any instant of t ime and at any point is finite and bounded as t ~ oo. 

B. The temperature at any instant and at any point is finite, but increases without limit as t--~ o o .  

C. There exists a value t = t~o such that as t - - t  oo the temperature increases without limit in a certain part of 
the vessel. 

Obviously, a reaction of type C corresponds to an explosion. The nature of a type B reaction is considered separate- 
ly. Note, however, that as yet the steady-state theory does not distinguish between type B and type C reactions. 

We shall consider instead of Eq. (2) the integral equation: 

t 

T (x, t ) =  ~, f d t f  Ka(x ,  ~, t - - ~ ) q ) [ T  (~, v ) ]d~  <3) 
o G 

* Note that in [8] an equation slightly different from the equation of the stationary theory was investigated for the 
first t ime for an arbitrary function ~0 (T). In this paper the conditions for the existence of a crit ical value of the para- 
meter of the problem were obtained and corresponding estimates given. 
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where KG(X, g,  t )  is the Green function for the region G [9]. We construct the sequence of functions= 

t 

T~(x, t ) =  Xfd~ I A~o (x, ~, t - ~ ) ~  [r~_~ (~, ~)]d~ 
o G 

(To --=- 0. k = O, t, 2 . . . ) .  (4) 

It is easy to show that if  Eq. (3) has a solution,  then sequence (4) converges as k - +  ~ , and v ice  versa.  Using the 

ordinary method of success ive  approximat ions ,  it is easy to show that if  the region G is suf f ic ient ly  smal l ,  or X is smal l ,  

then Eq, (5) has a solution that  is bounded over  the ent i re  in terva l  of var ia t ion  of t i m e .  This impl ies  that  in vessels of 

sma l l  d i a m e t e r ,  and also for smal l  values of X, the reac t ion  is of type A, i . e . ,  in these cases an explosion does not o c -  

cur.  Taking  into account  the decrease in concent ra t ion  only strengthens this s t a t emen t .  This result may  also be de -  

r ived from the s teady-s ta te  theory.  

We shall  now consider  regions (vessels) of suff ic ient ly  large dimensions or large values  of X. It is not d i f f icul t  to 

show that  for any M, however  large,  regions G and G '  c G (or a va lue  of ?, ) and a va lue  of t = t 1 can be chosen such 

that  the inequaI i t ies  

t 

~id~f  Ka(x,~,t--~c)cp(O)d[>,lI ( ~ a ' ,  t>h) (5) 
0 G" 

G" 

are sat isf ied.  

For f ixed values  of G and G '  it is possible to fulf i l  these inequal i t ies  by means of a suff ic ient  increase  in k. For the 

case of large regions,  these inequal i t ies  can be demonst ra ted ,  in v iew of the  fact  that  the  problem of a large region and 

a fixed va lue  of X can be reduced,  by a change  of sca le  (a change  of var iables  of the  form y = x / l  ), to the  problem of 

some f ixed reg ion  and a large  va lue  of ), (i t  is easy to see that  X increases as l z ). I f  inequa l i t i e s  (51, (8) are fu l f i t led  

by mak ing  X large,  then t t  can be made  very smal l .  

We now have  

t t 

l l 
o G o G' 

( x E  G', t > h ) .  

We put t 2 = t t [ 1 + 1 / r  ] ; then for t > t 2 , x ~ G '  

t 

T2(x, t)----- ~. f dxf K6(x, [, t - -  I:) q~ iT, (~, T)]d~ > 
0 G 

t t-t~ 

f f l 
h G '  o G '  

~t~ . .  M e ( M )  

U) 

(8) 

If it is assumed that ~0(M)/ ~o (2) > M, then from ( 3 ) we obtain 

T ( x , t ) ~ M  2 (x~G' ,  t> t2) .  

We put ,, [ ' , ]  ta=t2q--+-~=tl  1 § r + r 

By s imi la r  reasoning and assuming that r  z ) / r  (3) > M z, we obtain  

T3 (x, t) > M 3 (z ~ G', t > t3) etc. 

Assuming that  

[ ' 1 ' ] 
t . - - q  t + ~-i~ + ~(a5 + . . .  + ~ 
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we have 

T,~ (x, t) > M n (~ ~ G' t > in) for tp (M n-i) / r (n) > M n-i . 

We shall assume that the integral  d = ~ d T  / r (T)  is convergent; then the series 
l 

is convergent.  We put 

1 t 1 
�9 

[ & , , ] too* = t l  1 - t -  -t- ~--~ -[- �9 �9 �9 + ~ - - ~  -t- . . . .  

Now it is easy to show, taking M > 1, that T n (x , t )  ~ oo for n ---- 0% t--~t  ~ ,  and x ~ G' .  
there exists a value t = t .o such that the solution of equation (4) T (x , t )  --~ co when t ---*t 0o, x ~ G ' .  

(9) 

This implies that 
Thus, if 

9 (M~-l) M ~ - i  
d < o o ,  q0 (n) > ' ( i 0 )  

the lat ter  for al l  values of n (or beginning with a certain value of n) and beginning with a certain value of M, in a ves-  
sel occupying a region G, for which (5) and (69 are fulfi l led for the stated value of  M, the react ion will  be of type C. 
Note that the conditions (10) are fulfi l led even for the function 

9 (T) -~ Tz+', (p (T) -- T (|n T) i+z etc., (8 > 0). 

We shall now show that if  the integral  ] is divergent,  then the react ion cannot be of type C. 

In fact ,  assuming for s impl ic i ty  that the vessel is symmetr ica l ,  we find that the temperature  will  be a maximum at 

its center. At the point of maximum T, AT < 0; then from (2) we have 

T 
OT dT ~ dT 
-~-  < ~,q) (T) ,  ~r (T) < dt, J1 (t) = ~, ~ < t 

0 

Then J (T) -'~ r as T --> oo, and therefore t -+ ~o. Thus, i f  J is divergent,  then for large vessels the react ion cannot 
be of type C. For a function q~ (T) ," T, ~o (T) " T I n  T, e t c . ,  the react ion cannot be of type C. If  l i ra T "1 ~ (2") = 
= 0 as T---~oo, t h e n i n  any case the react ion is o f t y p e  A. i f  l ira T-1 ~(T) > 0as  T..-~ ~o (including l im T-1cp(T) = . o ,  

T- '~ ~o) and I is divergent,  then for large vessels or large values of X the react ion is of type B. 

According to the s teady-s ta te  theory,  for the case l i ra  T - i  9 (T) > 0 as T---co in vessels of large dimensions (or for 

large values of X ) an explosion must occur i r respect ive of the convergence or divergence of the integral  i .  

This difference is very important .  Only in the case of a type C react ion can we natural ly introduce the concept of 
an induction period and an explosion period [3, 5]. The term induction period may be applied to the interval  during 
which the system heats up re la t ive ly  slowly. The term explosion period may be applied to the interval  during which the 

temperature increases very rapidly up to enormous values. A value t n can be chosen somewhat condit ionaIly for the in -  
duction period, and for the  explosion period a value 

0,~= tl ~(nT+l) q- + . . .  + ' 9 ( n + 2 )  

the value of n being determined by the ac tual  conditions of the problem. 

It is important  to note that the induction period is determined by t 1 and by the rate  of increase of the function r (T) 
at smal l  T. As mentioned above,  if  X is large,  then t 1 is smal l  and the induction period is smal l .  Even if  X is smal l ,  
an explosion can be ensured by increasing the dimensions of the vessel,  but in this case h is large,  and the induction 
period may prove to be large.  Thus, for a smal l  heat  release in a large vessel, an explosion may occur if  the induction 

period is large (see [10], p. 201 ). It is possible that  such processes ac tua l ly  occur:  for example ,  development  of a 
benign tumor into a mal ignant  tumor [concentration interpretat ion of equation (2)]. 

The explosion period is determined from the expression 

l t 
q ~ ( n + t )  "-l- q~(n + 2) -~- ' ' "  "~ " '  " '  
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i. e . ,  by the rate of increase of the function ~ (13 at large vatues of T. 

In the case of a type B reaction we cannot naturally introduce the above-mentioned periods characteristic of the ex- 
plosion process, which gives us reason to suppose that only reactions of type C should be considered explosive. As men-  
tioned above, steady-state theory does not distinguish between reactions of types B and C. 

Below we consider the variation in the concentration n of an explosive in accordance with Eqs. (1). However, it 
is already worth drawing attention to the importance of the behavior of the function ~ (1") at small and large values of 

T in connection with the study of explosions. If ~ (T) increases rapidly at small  values of T, then the substance may 
react completely during the induction period. If ~ (T) does not increase rapidly enough at large values of T, then there 
will not be the sharp rise in temperature in a very short period of t ime characteristic of an explosion. 

As mentioned above, the study of chain explosions is linked with the investigation of a problem of the form (2) ,  in 
which the unknown function is the concentration. It is usual to consider the case in which q~(n) is a linear function [11, 
12], etc. One of the chief problems is to find the crit ical size of the reactor. The corresponding result can be fomula-  
ted as follows: at supercritical reactor dimensions the reaction develops with t ime according to the law exp(kt) (k > 0), 

i . e . ,  according to type B. Thus, the linear theory does not permit  the introduction of the concept of an induction 

and an explosion period needed to characterize the explosive nature of the process. It is natural to suppose that 

in studying a chain (neutron) explosion the function ~(n) should be assumed to satisfy conditions (10) and the above 

results applied. The actual form of the function o(n) is determined by the nature of the process. 

We shall now attempt to take into account the effect of the change in concentration in the course of the reaction. 
For this purpose we shall consider system (1), neglecting diffusion (it can be assumed that if the concentration decreases 
the diffusion is insignificant ). 

With these assumptions, and taking a first-order reaction, we obtain 

cOT 
cO--? = a2AT + ;Ln(t) (T) ,  

T lt=o = O, T I r  = O, 

From the second equation we have 

cOn 

cO-]- ----- - -  ~q~ (T) n 

n I t =  0 ------ N 0 . 

t 

o 

(11) 

and, substituting in the first, 

t 

o 

T l r  = O, Tl~=o = 0 . 

(12) 

This problem can be solved numerically. .  

Without going into a detailed investigation of Eq. (12), let us dwell, at the "physical" level ,  on certain properties 

of its solutions, using the results obtained above. As a first step in adapting the theory to the actual  explosion process, 

we shall assume that in the second equation of the system the value of ~(T) is constant and equal to q) (0); then n = r~ 

exp ( - v  ~ (0)t); we substitute the value of n in the first of equations (11): 

or__~ = a2AT _~_ Lno exp  (--~q~ (0) t) (p (T) 
Ot 

T I~=0 = 0 ,  T Jr = 0 . 

Hence it follows that with small  in i t ia l  concentrations no explosion occurs. Nor will an explosion occur if v is 

large. If, however, the concentration is sufficiently large and v is small ,  in a large vessel an explosion will occur, 
since the product X n o exp(-v~0(0)t) up to a certain moment,  sufficient for a powerfut increase in temperature, will 

be large (it is sufficient for this, for example,  that no exp[-v~(0) t~]  ~ t, where t~  is obtained from the theory with- 

out allowance for the fall in concentration). 

In another extreme case the temperature T can be postulated as the parameter in the second of equations (11), then 

n = no exp [ - -  ~q~ ( T )  t]  

OT-Z- = a2AT + ~no exp  [ - - ~ q )  (T) t] q~ (T)  
Ot 

r It=0 = O, r [r = O. 
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Similar reasoning can be followed. Very small values of v are necessary for an explosion. The difference from the 
previous case consists in that the temperature cannot tend to infinity, but reaches a maximum and then falls to zero. 
The last equation more accurately describes the development of the real process. If the solution of this equation has a 
sharp and large maximum, then an explosion will actually take place. The solution of system (11) is, in a certain sense, 
intermediate between these extremes. 

In considering problem (12), note that at small values of n o no explosion occurs. This follows from the results ob- 
t 

tained above (the product ~,i;=~n0 exp [-- ~ I ~ (T) dt] is small ). It is obvious that even at large values of u no 
O 

explosion will occur. 

Thus, we get the known [3] property of an explosive - the reaction rate must be very small at low temperatures. 

Above we obtained the characteristic properties of explosives' large heat release, slow increase of the function 
~0(T)atsmallvaluesof T, very rapid increase at high values of T, low value of the number v. This is confirmed by the 
experimental data [5]. It is worth noting that for explosives the ratio k / v  must be large. 

Finally, note that by  combining different behaviors of ~0(T), different values of X,  and different values of u it is 
possible to describe different types of exothermic processes. 

In conclusion, the authors wish to express their sincere thanks to S. F. Fal 'kovich for discussing this paper. 
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